Utilizamos cookies propias y de terceros para mejorar nuestros servicios. ¿ Estas de acerdo en continuar ?

902 033 733
Área Privada

Canal Estrategia

Analítica de datos, Inteligencia Artificial y Big Data aplicados a la banca

0 comentarios
martes, 28 de agosto de 2018
Analítica de datos, Inteligencia Artificial y Big Data aplicados a la banca

La sinergia entre la Analítica de datos, la Inteligencia Artificial y Big Data sustentan las bases de esta transformación digital. La conjunción de estos tres factores, permite a las empresas innovar en todas sus estructuras y ofrecer al cliente un servicio totalmente personalizado y a medida. Los datos son el petróleo del siglo XXI y el sector financiero se ha percatado de la cantidad de datos que generan cada uno de sus clientes diariamente y se está reformando totalmente para extraer el máximo conocimiento oculto en esos volúmenes de información, que, hasta el momento, no aportan valor; el objetivo es tener al cliente y sus datos como epicentro del negocio. A continuación, se listan un conjunto de casos de uso para el sector financiero que se pueden conseguir utilizando la sinergia de estas tecnologías:

 

1. Cuenta Inteligente: El objetivo es que la entidad financiera ofrezca al cliente un nuevo concepto de cuenta, abandonando la tradicional ‘ccc’, por un servicio de valor añadido que le permita recibir predicción de gastos futuros y posibles descubiertos a corto o medio plazo, entre otras múltiples funciones.

 

2. Productos financieros personalizados: Cada cliente tiene su propia actividad económica y gracias a la analítica de datos, se detectarán patrones y comportamientos que permitan ofrecerle productos financieros personalizados y a medida que logren una mejor experiencia del cliente y mayor satisfacción.

 

3. Nuevas oportunidades de negocio sobre clientes de la entidad: Además de la información que dispone el banco sobre la actividad económica de cada cliente, ahora también puede tener acceso a información externa del mismo, como de redes sociales o comportamientos en Internet, que permitan enriquecer el ecosistema de datos que rodea a cada cliente.

 

4. Nuevas oportunidades de negocio para personas no clientes: Incluir el análisis de datos externos puede generar nuevas oportunidades de negocio incluso sobre personas que no son clientes de la entidad financiera, que puede detectar necesidades financieras concretas de una persona y ofrecerle un producto que solvente una situación particular y quizás, pueda desencadenar en un futuro, el alta del mismo.

 

5. Gestión de riesgos y prevención del fraude: Son los dos casos de usos pioneros en las entidades bancarias basados en la analítica de datos, machine learning y big data; la gestión del riesgo y prevención del fraude son dos de los aspectos más importantes de los bancos en la actualidad y por ello, han sido los primeros proyectos que se han acometido con estas tecnologías.

 

6. Recomendador interno de dónde ubicar físicamente una oficina (sucursal): La entidad financiera deberá recopilar datos sobre qué zonas de la ciudad son frecuentadas por sus clientes, en qué horarios, dónde hacen sus compras, qué tipos de clientes son y qué en qué zonas tiene menor número de clientes y aplicando analítica podrá determinar cuál es la zona que le generará mayores beneficios para ubicar la sucursal.

 

7. Recomendador interno de dónde ubicar físicamente un cajero automático: Igualmente que en el caso anterior, el banco deberá analizar las zonas de la ciudad en las que sus clientes concentran sus gastos, cómo lo hacen y en qué zonas de la ciudad sus clientes utilizan cajeros de otra entidad financiera.

 

8. Recomendador de cuánto dinero cargar el cajero automático en fines de semana y festivos: Analizando el calendario local de la ubicación del cajero, las condiciones climatológicas y los eventos de la ciudad y su ubicación pueden determinar óptimamente cuál es la cuantía adecuada para cargar el cajero automático, con el objetivo de no bloquear mucho dinero ni que se impida dar el servicio por falta del mismo.

 

9. Predecir cuándo un cliente abandonará la entidad: Analizando la actividad de la cuenta de un cliente, y combinando la información con datos internos del resto de canales (oficina o web) y datos externos, de redes sociales, se puede determinar si el cliente abandonará la entidad.

 

10. Operaciones más frecuentes en cajeros: Muchos clientes de la entidad, cuando que acuden a un cajero automático, siempre realizan la misma operación; el objetivo es determinar el patrón y su comportamiento y ofrecerle dicha operación directamente evitando preguntas y navegaciones.

 

11. Analizar cuál es la vía más adecuada para comunicarse con el cliente: Los clientes demandan recibir las notificaciones de su banco a través de los nuevos canales que utilizan de forma predeterminada, redes sociales, correo electrónico o mensajería instantánea; la entidad financiera debe analizar cuál es el canal prioritario del cliente, aquel con el que se siente más cómodo para recibir notificaciones y canalizarlas por dicha vía; debe abandonar la tradicional política de acoso de notificaciones a canales que no utiliza el cliente y que resulta un gasto innecesario.

 

12. Nuevas vías de negocio para monetizar los datos agregados y anonimizados: Los datos de los clientes suponen el activo más importante de la entidad financiera, pero a su vez, esta información puede suponer un gran valor para otra entidad financiera o empresa, que explote dichos datos anonimizados y agregados.

 

13. Optimización de procesos y recursos de la entidad: Recopilar datos de procesos y recursos de la entidad y su posterior análisis, permitirá descubrir patrones y comportamientos ocultos y desconocidos hasta el momento, que permitan maximizar el beneficio con un menor gasto.

 

La sinergia entre la Analítica de datos, la Inteligencia Artificial y Big Data sustentan las bases de esta transformación digital. La conjunción de estos tres factores, permite a las empresas innovar en todas sus estructuras y ofrecer al cliente un servicio totalmente personalizado y a medida. Los datos son el petróleo del siglo XXI y el sector financiero se ha percatado de la cantidad de datos que generan cada uno de sus clientes diariamente y se está reformando totalmente para extraer el máximo conocimiento oculto en esos volúmenes de información, que, hasta el momento, no aportan valor; el objetivo es tener al cliente y sus datos como epicentro del negocio. A continuación, se listan un conjunto de casos de uso para el sector financiero que se pueden conseguir utilizando la sinergia de estas tecnologías:

 

1. Cuenta Inteligente: El objetivo es que la entidad financiera ofrezca al cliente un nuevo concepto de cuenta, abandonando la tradicional ‘ccc’, por un servicio de valor añadido que le permita recibir predicción de gastos futuros y posibles descubiertos a corto o medio plazo, entre otras múltiples funciones.

 

2. Productos financieros personalizados: Cada cliente tiene su propia actividad económica y gracias a la analítica de datos, se detectarán patrones y comportamientos que permitan ofrecerle productos financieros personalizados y a medida que logren una mejor experiencia del cliente y mayor satisfacción.

 

3. Nuevas oportunidades de negocio sobre clientes de la entidad: Además de la información que dispone el banco sobre la actividad económica de cada cliente, ahora también puede tener acceso a información externa del mismo, como de redes sociales o comportamientos en Internet, que permitan enriquecer el ecosistema de datos que rodea a cada cliente.

 

4. Nuevas oportunidades de negocio para personas no clientes: Incluir el análisis de datos externos puede generar nuevas oportunidades de negocio incluso sobre personas que no son clientes de la entidad financiera, que puede detectar necesidades financieras concretas de una persona y ofrecerle un producto que solvente una situación particular y quizás, pueda desencadenar en un futuro, el alta del mismo.

 

5. Gestión de riesgos y prevención del fraude: Son los dos casos de usos pioneros en las entidades bancarias basados en la analítica de datos, machine learning y big data; la gestión del riesgo y prevención del fraude son dos de los aspectos más importantes de los bancos en la actualidad y por ello, han sido los primeros proyectos que se han acometido con estas tecnologías.

 

6. Recomendador interno de dónde ubicar físicamente una oficina (sucursal): La entidad financiera deberá recopilar datos sobre qué zonas de la ciudad son frecuentadas por sus clientes, en qué horarios, dónde hacen sus compras, qué tipos de clientes son y qué en qué zonas tiene menor número de clientes y aplicando analítica podrá determinar cuál es la zona que le generará mayores beneficios para ubicar la sucursal.

 

7. Recomendador interno de dónde ubicar físicamente un cajero automático: Igualmente que en el caso anterior, el banco deberá analizar las zonas de la ciudad en las que sus clientes concentran sus gastos, cómo lo hacen y en qué zonas de la ciudad sus clientes utilizan cajeros de otra entidad financiera.

 

8. Recomendador de cuánto dinero cargar el cajero automático en fines de semana y festivos: Analizando el calendario local de la ubicación del cajero, las condiciones climatológicas y los eventos de la ciudad y su ubicación pueden determinar óptimamente cuál es la cuantía adecuada para cargar el cajero automático, con el objetivo de no bloquear mucho dinero ni que se impida dar el servicio por falta del mismo.

 

9. Predecir cuándo un cliente abandonará la entidad: Analizando la actividad de la cuenta de un cliente, y combinando la información con datos internos del resto de canales (oficina o web) y datos externos, de redes sociales, se puede determinar si el cliente abandonará la entidad.

 

10. Operaciones más frecuentes en cajeros: Muchos clientes de la entidad, cuando que acuden a un cajero automático, siempre realizan la misma operación; el objetivo es determinar el patrón y su comportamiento y ofrecerle dicha operación directamente evitando preguntas y navegaciones.

 

11. Analizar cuál es la vía más adecuada para comunicarse con el cliente: Los clientes demandan recibir las notificaciones de su banco a través de los nuevos canales que utilizan de forma predeterminada, redes sociales, correo electrónico o mensajería instantánea; la entidad financiera debe analizar cuál es el canal prioritario del cliente, aquel con el que se siente más cómodo para recibir notificaciones y canalizarlas por dicha vía; debe abandonar la tradicional política de acoso de notificaciones a canales que no utiliza el cliente y que resulta un gasto innecesario.

 

12. Nuevas vías de negocio para monetizar los datos agregados y anonimizados: Los datos de los clientes suponen el activo más importante de la entidad financiera, pero a su vez, esta información puede suponer un gran valor para otra entidad financiera o empresa, que explote dichos datos anonimizados y agregados.

 

13. Optimización de procesos y recursos de la entidad: Recopilar datos de procesos y recursos de la entidad y su posterior análisis, permitirá descubrir patrones y comportamientos ocultos y desconocidos hasta el momento, que permitan maximizar el beneficio con un menor gasto.

Tu opinión nos interesa

Nombre:  *
Email:  * (No será publicado)
Comentario:  *

No hay ningún comentario, sé el primero en comentar!